
BERKELEY PAR LAB BERKELEY PAR LAB

End of ParLab Celebration

May 30th, 2013

BERKELEY PAR LAB

Schedule

 9:30 Where We Started, Where We Ended Up

 11:15 Group Talks, Demos, and Testimonials

 12:45 Lunch, Boxed Lunches

 2:00 Group Talks, Demos, and Testimonials

 4:30 Integrated Talk, Demo, and Feedback

 5:50 David Wessel and Matthew Goodheart Concert

 6:20 Group Photo

 6:45 Reception, Dinner, and Toasts, Bancroft Hotel

 10:00 Lubricated Discussion, Freehouse

2

BERKELEY PAR LAB

Announcements

Sunglasses!

No Food in Hertz Hall

 Including coffee 

15 Live Demos, 28 Speakers!

Save Questions for the Breaks

Videos to come

3

First Retreat – Jan 9-11 2008

4

January 2008

MAY 2013

5

JAN 2007

The Berkeley View on the

Parallel Computing Landscape

David Patterson, Krste Asanovíc, Kurt Keutzer,
and a cast of thousands

U.C. Berkeley

 January 2007

 People magazine Sexiest Man
Alive: Matt Damon

 5th Harry Potter movie opens July

7

 People magazine Sexiest Man
Alive:

 HP Laptop: 2 GHz Core 2 duo,
2 GB DRAM, 200 GB disk, $1700

 Maker best tablet: Microsoft

 Maker best cell phone: Blackberry

January 2007

 TV show Mad Men premieres July

 Maker best cell phone:

 Maker best tablet:

8

High Level Message

 Everything is changing

 Old conventional wisdom is out

 We desperately need new approach to HW
and SW based on parallelism since industry
has bet its future that parallelism works

 Need to create a “watering hole” to bring
everyone together to quickly find that
solution
 architects, language designers, application experts, numerical

analysts, algorithm designers, programmers, …

January 2007

9

Outline

 Old vs. New Conventional Wisdom

 7 Questions to Frame Parallel Research

 New Benchmarks for New Architectures

 Hardware Building Blocks

 Human-centric Programming Model

 Innovating at HW/SW interface without Compilers

 Deconstructing Operating Systems

 Building innovative computers without custom chips

 Optimism for Parallel Computing Revolution?

 Where do we go from here?

January 2007

10

Conventional Wisdom (CW)
 in Computer Architecture

1. Old CW: Power is free, but transistors expensive

 New CW is the “Power wall”:
Power is expensive, but transistors are “free”
 Can put more transistors on a chip than have the power to turn on

2. Old CW: Multiplies slow, but loads and stores fast

 New CW is the “Memory wall”:
Loads and stores are slow, but multiplies fast
 200 clocks to DRAM, but even FP multiplies only 4 clocks

3. Old CW: We can reveal more ILP via compilers
and architecture innovation
 Branch prediction, OOO execution, speculation, VLIW, …

 New CW is the “ILP wall”:
Diminishing returns on finding more ILP

January 2007

11

Conventional Wisdom (CW)
 in Computer Architecture

4. Old CW: 2X CPU Performance every 18 months

 New CW is Power Wall + Memory Wall + ILP Wall
= Brick Wall

5. Old CW: Increasing clock frequency is primary
method of performance improvement

 New CW: Processors Parallelism is primary method
of performance improvement

6. Old CW: Don’t bother parallelizing app, just wait
and run on much faster sequential computer

 New CW: No one building 1 processor per chip
 End of La-Z-Boy Programming Era

January 2007

12

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e
 (

v
s
.

V
A

X
-1

1
/7

8
0
)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A

Quantitative Approach, 4th edition, Sept. 15 2006

 Sea change in chip

design: multiple “cores” or

processors per chip

3X

January 2007

13

Parallelism again? What’s different
this time?

“This shift toward increasing parallelism is not a
triumphant stride forward based on breakthroughs
in novel software and architectures for parallelism;
instead, this plunge into parallelism is actually a
retreat from even greater challenges that thwart
efficient silicon implementation of traditional
uniprocessor architectures.”

 Berkeley View, December 2006

 HW/SW Industry bet its future that breakthroughs
will appear in the not too distant future

 January 2007

14

0

50

100

150

200

250

300

1985 1995 2005 2015

Millions of
PCs / year

P.S. Parallel Revolution May Fail
 John Hennessy, President, Stanford University, 1/07:

“…when we start talking about parallelism and ease of use of truly
parallel computers, we're talking about a problem that's as hard
as any that computer science has faced. …
I would be panicked if I were in industry.”
“A Conversation with Hennessy & Patterson,” ACM Queue Magazine, 4:10, 1/07.

 100% failure rate of Parallel Computer Companies
 Convex, Encore, Inmos (Transputer), MasPar, NCUBE, Kendall

Square Research, Sequent, (Silicon Graphics), Thinking Machines, …

 What if IT goes from a
growth industry to a
replacement industry?
 If SW can’t effectively use

32, 64, ... cores per chip
 SW no faster on new computer
 Only buy if computer wears out

January 2007

 PC quarterly sales plummet,
 sharpest drop on record

15

May 2013

16

Need a New Approach

 Berkeley researchers from many backgrounds met
between February 2005 and December 2006 to
discuss parallelism
 Circuit design, computer architecture, massively parallel computing,

computer-aided design, embedded hardware and software,
programming languages, compilers, scientific programming, and
numerical analysis

 Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro,
Joseph Gebis, Parry Husbands, Kurt Keutzer, Dave
Patterson, William Plishker, John Shalf, Samuel
Williams, Katherine Yelick + others

January 2007

What’s the Big Idea?

 Big Idea: No (Preconceived) Big Idea!

 In past, apps considered at end of project

 Instead, work with domain experts at
beginning to develop compelling applications
 Lots of ideas now (and more to come)

 Apps determine in 3-5 yrs which ideas are
big

17

July 2007

18

7 Questions for Parallelism
 Applications:

1. What are the apps?

2. What are kernels of apps?

 Hardware:

3. What are the HW building
blocks?

4. How to connect them?

 Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

 Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

January 2007

19

Re-inventing Client/Server

 Laptop/Handheld as future client,
Datacenter as future server

 “The Datacenter is the Computer”
Building sized computers: Google, MS, …

 “The Laptop/Handheld is the Computer”

 ‘07: HP no. laptops > desktops

 1B+ Cell phones/yr, increasing in function

 Otellini demoed "Universal Communicator”
 Combination cell phone, PC and video device

April 2007

20

Compelling Laptop/Handheld Apps
(David Wessel)

 Musicians have an insatiable appetite for
computation
 More channels, instruments, more processing,

more interaction!

 Latency must be low (5 ms)

 Must be reliable (No clicks)

1. Music Enhancer
 Enhanced sound delivery systems for home

sound systems using large microphone and
speaker arrays

 Laptop/Handheld recreate 3D sound over ear
buds

2. Hearing Augmenter
 Laptop/Handheld as accelerator for hearing aide

3. Novel Instrument User Interface
 New composition and performance systems

beyond keyboards

 Input device for Laptop/Handheld

Berkeley Center for New Music and
Audio Technology (CNMAT) created a
compact loudspeaker array:
10-inch-diameter icosahedron
incorporating 120 tweeters.

April 2007

21

Parallel Browser

 Goal: Desktop quality browsing on handhelds
 Enabled by 4G networks, better output devices

 Bottlenecks to parallelize
 Parsing, Rendering, Scripting

 “SkipJax”
 Parallel replacement for JavaScript/AJAX

 Based on Brown’s FlapJax

April 2007

22

Compelling Laptop/Handheld Apps
(Nelson Morgan)
  Meeting Diarist

 Laptops/ Handhelds at
meeting coordinate to
create speaker
identified, partially
transcribed text diary of
meeting

 Teleconference speaker identifier,
 speech helper

 L/Hs used for teleconference, identifies who is
 speaking, “closed caption” hint of what being said

April 2007

23

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance

Feedback

Image

Database

Query by example

Similarity

Metric

Candidate

Results Final Result

 Built around Key Characteristics of personal
databases
Very large number of pictures (>5K)
Non-labeled images
Many pictures of few people
Complex pictures including people, events, places,

and objects

1000’s of

images

April 2007

24

Coronary Artery Disease (Tony Keaveny)

 Modeling to help patient compliance?

• 450k deaths/year, 16M w. symptom, 72MBP

 Massively parallel, Real-time variations

• CFD FE solid (non-linear), fluid (Newtonian), pulsatile

• Blood pressure, activity, habitus, cholesterol

Before After

April 2007

25

Compelling Laptop/Handheld Apps

 Health Coach
 Since laptop/handheld always with you,

Record images of all meals, weigh plate
before and after, analyze calories
consumed so far
 “What if I order a pizza for my next meal?

A salad?”

 Since laptop/handheld always with you,
record amount of exercise so far, show
how body would look if maintain this
exercise and diet pattern next 3 months
 “What would I look like if I regularly ran

less? Further?”

 Face Recognizer/Name Whisperer
 Laptop/handheld scans faces, matches

image database, whispers name in ear
(relies on Content Based Image Retrieval)

April 2007

Surprisingly Accurate Prediction

 Before myfitnesspal

 After myfitnesspal

26 May 2013

27

 Old CW: Since cannot know future programs,
use old programs to evaluate future computers
 e.g., SPEC2006, EEMBC

 What about parallel codes?
 Few, tied to old models, languages, architectures, …

 New approach: Design future computers for
patterns of computation and communication
important in the future

 Claim: 13 “dwarfs” are key for next decade,
so design for them!
 Representative codes may vary over time, but these

dwarfs will be important for > 10 years

Apps and Kernels

January 2007

28

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids

3. Fast Fourier Transform

4. Dense Linear Algebra

5. Sparse Linear Algebra

6. Particles

7. Monte Carlo

Phillip Colella’s “Seven dwarfs”

 A dwarf is a pattern of
computation and
communication

 Dwarfs are well-
defined targets from
algorithmic, software,
and architecture
standpoints

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella 2004

January 2007

29

Do dwarfs work well outside HPC?

 Examine effectiveness 7 dwarfs elsewhere

1. Embedded Computing (EEMBC benchmark)

2. Desktop/Server Computing (SPEC2006)

3. Machine Learning
 Advice from Mike Jordan and Dan Klein of UC Berkeley

4. Games/Graphics/Vision

5. Data Base Software
 Advice from Jim Gray of Microsoft and Joe Hellerstein of UC

 Result: Added 7 more dwarfs, revised 2
original dwarfs, renumbered list

January 2007

30

13 Dwarfs (so far)

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

 8. Combinational Logic

 9. Graph Traversal

10. Dynamic Programming

11. Back-track/Branch & Bound

12. Graphical Model Inference

13. Finite State Machine

• Claim is that parallel architecture, language, compiler
… that do these well will run parallel apps of future well
• Note: MapReduce is embarrassingly parallel;
 perhaps FSM is embarrassingly sequential?

January 2007

31

Dwarf Popularity (Red Hot  Blue Cool)

HPC Embed SPEC ML Games DB

1 Dense Matrix

2 Sparse Matrix

3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured

7 MapReduce

8 Combinational

9 Graph Traversal

10 Dynamic Prog

11 Backtrack/ B&B

12 Graphical Models

13 FSM

January 2007

32

7 Questions for Parallelism
Applications:

1. What are the apps?

2. What are kernels of apps?

 Hardware:

3. What are the HW building
blocks?

4. How to connect them?

 Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

 Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

January 2007

33

HW Solution: Small is Beautiful

 Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs
 Small cores not much slower than large cores

 Parallel is energy efficient path to performance:CV2F
 Lower threshold and supply voltages lowers energy per op

 Redundant processors can improve chip yield
 Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

 Small, regular processing elements easier to verify

 One size fits all?
 Amdahl’s Law  a few fast cores + many small cores?

January 2007

34

Heterogeneous Processors?

 Suppose to run the code 2X faster 1 core
needs 10X resources (power, caches, …)

 Amdahl’s Law: Assume 10% time program
gets no faster on manycore computer (e.g. OS)

Geneity? Slow Cores Fast Cores Speedup

Homo- 100 0 9.2

Homo- 0 10 10.5

Hetero- 90 1 16.7

Heterogeneous same area but 1.6X to 1.8X faster

January 2007

35

Number of Cores/Socket

 We need revolution, not evolution

 Software or architecture alone can’t fix parallel
programming problem, need innovations in both

 “Multicore” 2X cores per generation: 2, 4, 8, …

 “Manycore” 100s is highest performance per unit
area, and per Watt, then 2X per generation:
128, 256, 512, 1024 …

 Multicore architectures & Programming
Models good for 2 to 32 cores won’t evolve to
Manycore systems of 1000’s of processors
 Desperately need HW/SW models that
work for Manycore

January 2007

36

Some obvious (but neglected)
recommendations for hardware
 Counters and other instrumentation more

important than in the past
 Needed for Feedback directed applications

 Since energy is limit, include energy counters as well as
performance counters

 Include counters that work!
 In past low priority, so ship even if counters broken, or don’t

slow processor to measure it

 If can’t measure feature, won’t use it effectively

 Don’t include features that significantly
affect performance or energy if programmers
cannot accurately measure their impact

January 2007

37

How to Connect Processors?

 Topic wide open! (HW/SW innovations ASAP!)

 13 Dwarfs to gain insight into Networks On a Chip
 Sparse connectivity for dwarfs; crossbar is overkill

 No single best topology

 A Bandwidth-oriented network for data
 Most point-to-point message are large and BW bound

 Separate Latency-oriented network for collectives
 Given BW improves > (latency improvement)2

 E.g., Thinking Machines CM-5, Cray T3D, IBM BlueGene/L&P

 Virtual circuit switch??

 Synchronization??
 Transactional memory, full-empty bits, barriers???

 Is cache coherency all we need to coordinate cores?

January 2007

38

7 Questions for Parallelism
Applications:

1. What are the apps?

2. What are kernels of apps?

 Hardware:

3. What are the HW building
blocks?

4. How to connect them?

 Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

 Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

January 2007

39

Programming Model

 Programming model must allow
programmer to balance competing goals of
productivity and implementation efficiency
 Biggest challenge facing manycore systems

 Programming Model high priority

 Past foci of parallel Programming Models:

1. Hardware-centric (e.g., C-variants)

2. Application-centric (e.g., MatLab)

3. Formalism-centric (e.g., Sisal)

January 2007

40

21st Century Code Generation

 Takes a decade for compiler innovations to
show up in production compilers?

 New approach: “Auto-tuners” 1st run variations
of program on computer to find best
combinations of optimizations (blocking,
padding, …) and algorithms, then produce C
code to be compiled for that computer
 E.g., PHiPAC (BLAS), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

 Can achieve 10X over conventional compiler

 One Auto-tuner per kernel or dwarf?
 Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

January 2007

41

Deconstructing Operating Systems

 Resurgence of interest in virtual machines
 Traditional OSes brittle & too large (AIX GBs DRAM)

 VM monitor thin SW layer btw guest OS and HW

 Advantages
 Security via isolation

 VMs move from failing processor

 Mendel Rosenblum: future of OSes could be
libraries where only functions needed are
linked into app, on top of thin VMM layer
providing protection and sharing of resources
 Everywhere, but great match to 1000s of processors

January 2007

42

7 Questions for Parallelism

 Applications:

1. What are the apps?

2. What are kernels of apps?

 Hardware:

3. What are the HW building
blocks?

4. How to connect them?

Programming Model & Systems
Software:

5. How to describe apps and
kernels?

6. How to program the HW?

 Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

January 2007

43

How to measure success?

 Easy to write programs that execute
efficiently on manycore computing systems

1. Maximizing programmer productivity

2. Maximizing application performance and
energy efficiency

 Challenges

 Conventional Serial Performance Issues

 Minimizing Remote Accesses

 Balancing Load

 Granularity of Data Movement and
Synchronization

January 2007

44

1. Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, …
not ready for 1000 CPUs / chip

2.  Only companies can build HW, and it takes years

3. Software people don’t start working hard until
hardware arrives

• 3 months after HW arrives, SW people list everything that must be
fixed, then we all wait 4 years for next iteration of HW/SW

4. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

5. Can avoid waiting years between HW/SW iterations?

Problems with “Manycore” Sea Change

January 2007

45

Build Academic Manycore from FPGAs
 As  16 CPUs will fit in Field Programmable Gate

Array (FPGA), 1000-CPU system from  64 FPGAs?
• 8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)

• FPGA generations every 1.5 yrs;  2X CPUs,  1.2X clock rate

 HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
 E.g., 1000 processor, standard ISA binary-compatible, 64-bit,

cache-coherent supercomputer @  150 MHz/CPU in 2007

 RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and
Washington

 “Research Accelerator for Multiple Processors” as
a vehicle to attract many to parallel challenge

January 2007

46

 8 MicroBlaze cores / FPGA

 8 BEE2 modules (32 “user”
FPGAs) x 4 FPGAs/module
= 256 cores @ 100MHz
 $10k/board

 Full star-connection
between modules

 It works; runs NAS
benchmarks in UPC

 Cores are softcore
MicroBlazes
(32-bit Xilinx RISC)

 Schultz, Krasnov,
Wawrzynek at Berkeley

256 CPU Message Passing/RAMP Blue

January 2007

47

Change directions of research funding?

Cal CMU MIT Stanford …

Application

Language

Compiler

Libraries

Networks

Architecture

Hardware

CAD

Historically:
Get leading
experts per
discipline
(across US)
working
together
to work on
parallelism

January 2007

48

Change directions of research funding?

Cal CMU MIT Stanford …

Application

Language

Compiler

Libraries

Networks

Architecture

Hardware

CAD

To increase
cross-
disciplinary
bandwidth,
get experts
per site
working
together on
parallelism

January 2007

49

Physical Par Lab:
Maximizing Communication & Concentration

Meeting Rooms Students/Postocs Faculty Staff

June 2008

50

Summary: A Berkeley View 2.0
 Whole IT industry has bet its

future on parallelism (!)
 Recruit best minds to help?

 Try Apps-Driven vs. CS
Solution-Driven Research

 Motifs/dwarfs as lingua
franca, anti-benchmarks…

 Efficiency layer for ≈10%
today’s programmers

 Productivity layer for ≈90%
today’s programmers

 C&C language to help
compose and coordinate

 Autotuners vs. Parallelizing
Compilers

 OS & HW: Composable
Primitives vs. Solutions

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Motifs/Dwarfs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

O
S

A

rc
h
.

P
ro

d
u
c
ti
v
it
y

E
ff
ic

ie
n
c
y

C
o
rr

e
c
tn

e
s
s

A
p
p
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with

Replay

Directed

Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

Easy to write correct programs that run
efficiently and scale up on manycore

April 2007

51

Where to go from here?

 What bold new applications will manycore enable?

 Can we design architectures that make parallel
programming easier?

 Can we develop highly-productive programming
models that harness the performance of manycore?

 Berkeley is one ideal place to do the cross-
disciplinary research needed to save the IT
industry’s desperate bet on parallelism

January 2007

MAY 2013

52

JAN 2007

